首页 > 教育与人 正文
Introduction
In the world of mathematics and statistics, a random variable is defined as a function that takes on values that are determined by chance, rather than a predetermined value. A random variable can either be continuous or discrete. In this article, we will delve into the concept of discrete random variables, discussing what they are, their characteristics, and how they differ from continuous random variables.
Defining Discrete Random Variables
Discrete random variables are those that can take on a finite or countably infinite number of values. The values that a discrete random variable can take on are typically discrete or separate, meaning that there are \"gaps\" between them. For instance, the number of children a family can have is a discrete random variable because the possible number of children is countable, and there are \"gaps\" between them (e.g. a family can have 0, 1, 2, 3 children, but not 1.5 children).
Discrete random variables are often represented using probability mass functions (PMF). A PMF is essentially a graph or table that maps out the possible values that a discrete random variable can take on, and the probabilities associated with each value. A PMF allows us to calculate the probability of a specific outcome or set of outcomes for a discrete random variable.
Differences Between Discrete and Continuous Random Variables
As previously mentioned, the main difference between discrete random variables and continuous random variables lies in the nature of their values. While discrete random variables can only take on a finite or countably infinite number of values, continuous random variables can take on any value within a certain range. For instance, the weight of a randomly selected apple is a continuous random variable because it can take on any value within a certain range, even if the range is very narrow (e.g. 100-101 grams).
In addition, continuous random variables are commonly represented using probability density functions (PDF). A PDF is similar to a PMF in that it maps out the possible values that a continuous random variable can take on, but instead of assigning specific probabilities to each value, it assigns probabilities to specific ranges of values. This is because the probability of any individual value for a continuous random variable is technically 0, due to the infinite number of possible values.
Conclusion
Discrete random variables are an important concept in the field of statistics and mathematics. Knowing the difference between discrete and continuous random variables, as well as understanding how to represent and calculate probabilities for both types of variables using PMFs and PDFs, is crucial for data analysis and decision making in a variety of fields.
- 上一篇:相爱十年剧情介绍简介(十年恋:一个相爱十年的故事)
- 下一篇:返回列表
猜你喜欢
- 2023-06-14 离散型随机变量英文缩写(Discrete Random Variables Understanding the Concept)
- 2023-06-14 知彼知己,胜乃不殆;知天知地,胜乃不穷应用到生活中(胜人有志,大多数人都有自己的目标和理想。但是,了解
- 2023-06-14 真我手机省电模式和正常模式的区别(真我手机的省电模式和正常模式:谁更胜一筹?)
- 2023-06-14 相爱十年剧情介绍简介(十年恋:一个相爱十年的故事)
- 2023-06-14 疏勒县距离喀什市有多远(疏勒县与喀什市的距离)
- 2023-06-14 用于批处理文件的扩展名(批处理文件中常见的扩展名)
- 2023-06-14 甜味开胃菜黑胡椒(甜香黑胡椒:又咸又甜的开胃菜)
- 2023-06-14 玲玲在美国做饭(美味的西式菜肴——玲玲在美国做饭的心路历程)
- 2023-06-14 现在时间变快了吗(时间流逝匆匆,人们经常会感觉时间过得飞快,仿佛一眨眼就过去了很长时间,不禁让人疑惑
- 2023-06-14 现代周公解梦大全2345(现代解梦大全2345- 周公解梦)
- 2023-06-14 王骏毅个人资料简介(王骏毅:一个充满创造力的年轻人 )
- 2023-06-14 王安石桂枝香金陵怀古背景(触发怀古之情:王安石桂枝香金陵怀古背景分析)
- 2023-06-14离散型随机变量英文缩写(Discrete Random Variables Understanding the Concept)
- 2023-06-14知彼知己,胜乃不殆;知天知地,胜乃不穷应用到生活中(胜人有志,大多数人都有自己的目标和理想。但是,了解
- 2023-06-14真我手机省电模式和正常模式的区别(真我手机的省电模式和正常模式:谁更胜一筹?)
- 2023-06-14相爱十年剧情介绍简介(十年恋:一个相爱十年的故事)
- 2023-06-14疏勒县距离喀什市有多远(疏勒县与喀什市的距离)
- 2023-06-14用于批处理文件的扩展名(批处理文件中常见的扩展名)
- 2023-06-14甜味开胃菜黑胡椒(甜香黑胡椒:又咸又甜的开胃菜)
- 2023-06-14玲玲在美国做饭(美味的西式菜肴——玲玲在美国做饭的心路历程)
- 2023-03-03ky是什么意思(托马仕空气净化系统让家用新风进入智能时代)
- 2023-03-02世界红十字日(中国红十字会开展“救在身边·红十字日”活动)
- 2023-02-27凿壁借光的主人公是谁(匡衡的老爹是谁?)
- 2023-03-15网络售票几点开始(@所有人,这份2022春运时间表请收好!)
- 2023-03-08伞兵 打一成语(乐亲乐友乐开怀)
- 2023-03-10最便宜五羊本田摩托车多少钱一部(五羊本田new幻彩上市,标配液晶仪表)
- 2023-03-10海马汽车报价(海马7x-e上市售价12.58万元)
- 2023-03-08菲亚特汽车报价(abarth595/695国内预售8万起)
- 2023-06-14爱慕股份有限公司上市时间(爱慕股份有限公司:掀起婚纱市场新风潮)
- 2023-06-14爱宜都分类信息网爱宜都网(爱宜都分类信息网——发现你想要的)
- 2023-06-14朱自清春小学几年级(朱自清春小学的美好时光)
- 2023-06-14暗芝居官网怪物图鉴(暗芝居怪物世界探秘)
- 2023-06-14搞笑生日祝福语简短精辟(搞笑的生日祝福语)
- 2023-06-14客厅沙发十大品牌表(客厅沙发:十大品牌盘点)
- 2023-06-14实时加拿大汇率人民币汇率(实时观察加拿大元和人民币汇率)
- 2023-06-14宜信普泽基金官网客服电话(宜信普泽基金官方客服电话)
- 猜你喜欢
-
- 离散型随机变量英文缩写(Discrete Random Variables Understanding the Concept)
- 知彼知己,胜乃不殆;知天知地,胜乃不穷应用到生活中(胜人有志,大多数人都有自己的目标和理想。但是,了解
- 真我手机省电模式和正常模式的区别(真我手机的省电模式和正常模式:谁更胜一筹?)
- 相爱十年剧情介绍简介(十年恋:一个相爱十年的故事)
- 疏勒县距离喀什市有多远(疏勒县与喀什市的距离)
- 用于批处理文件的扩展名(批处理文件中常见的扩展名)
- 甜味开胃菜黑胡椒(甜香黑胡椒:又咸又甜的开胃菜)
- 玲玲在美国做饭(美味的西式菜肴——玲玲在美国做饭的心路历程)
- 现在时间变快了吗(时间流逝匆匆,人们经常会感觉时间过得飞快,仿佛一眨眼就过去了很长时间,不禁让人疑惑
- 现代周公解梦大全2345(现代解梦大全2345- 周公解梦)
- 王骏毅个人资料简介(王骏毅:一个充满创造力的年轻人 )
- 王安石桂枝香金陵怀古背景(触发怀古之情:王安石桂枝香金陵怀古背景分析)
- 猎户星空科技有限公司怎么样(猎户星空科技有限公司:创新科技引领未来)
- 独闯天涯有声书(独闯天涯:一段有声书旅程)
- 独门秘诀什么意思(如何通过不为人知的方法获得成功?)
- 爱慕股份有限公司上市时间(爱慕股份有限公司:掀起婚纱市场新风潮)
- 爱情公寓二季免费观看完整版(爱情公寓二:免费完整版观看指南)
- 爱宜都分类信息网爱宜都网(爱宜都分类信息网——发现你想要的)
- 演员张桐个人资料简介(演艺界新秀·张桐)
- 渔父屈原原文及翻译拼音(屈原投江——古代渔父目击的悲剧)
- 清潭洞爱丽丝免费观看全集(清潭洞爱丽丝:让你重新认识童话世界)
- 济南绿城深蓝广场卖给谁(济南绿城深蓝广场成交,谁是最终买家?)
- 济南天津银行网点查询(济南天津银行网点查询)
- 河滨国际公寓房间号(河滨国际公寓房间分布)
- 汤嬿个人资料 剧照(汤嬿个人资料:娇艳欲滴的才女)
- 求边际产量的最大值(如何优化产量增长--探究边际产量的最大值)
- 武汉力源信息大厦(武汉力源信息大厦:科技创新发展的新中心)
- 欧鹏集团董事长 诉讼(欧鹏集团董事长被控诉讼案件)
- 欢乐养猪场app(欢乐养猪场App:养猪乐趣无限)
- 梁羽生作品集(全五册)(梁羽生著作全集:江湖情、碧血剑、绝代双骄、书剑恩仇录、白发魔女传)